COMMUNICATION NAVIGATION SURVEILLANCE Integrated SECURITY SESSION

W C

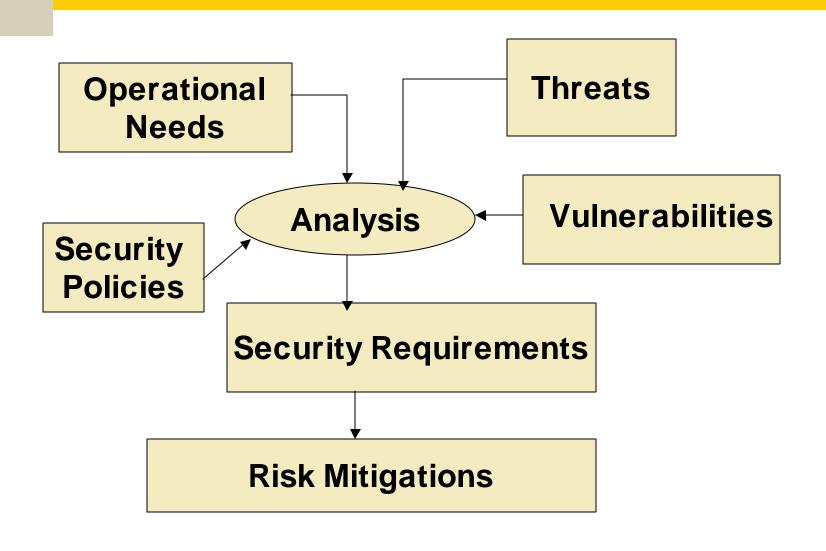
Marie Stella, CISSP

Marie.stella@faa.gov

NASA I-CNS Conference

April 30, 2002

AGENDA

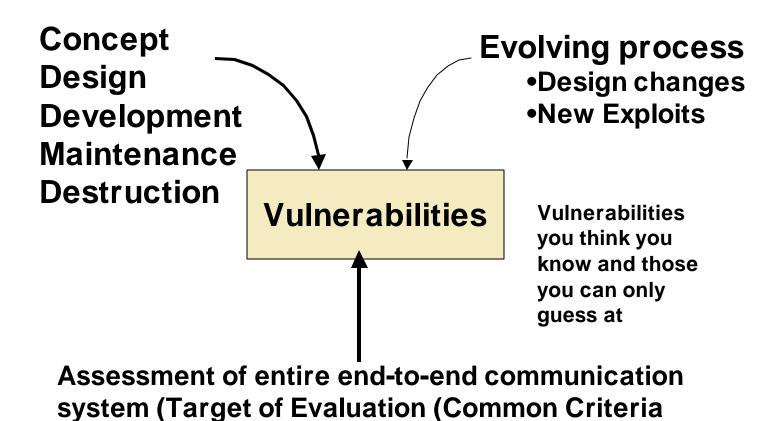

FAA Perspective on Aviation Security

- Generic security requirements analysis
- Application in National Air Space (NAS)
- Current CNS Systems in terms of security
- Security Challenges for the Evolving NAS

Security Enhancements for the NAS via:

- VHF Data Link for Security Applications
- Front End Security Architecture
- Multi-Center Traffic Management Advisor
- Broadband Satellite Communication Services
- Neural Networks/ Optimize Runway Safety Logic
- Security Considerations for the e-enabled Aircraft

Generic Methodology


Generic Methodology con't.

What threat Enterprise **Security Policies** mechanisms will be used •Threat Agents – Physical Who and why? •Cyber **Threats** •How •When •Where Consequence **Enemies you think you** know and those you can

This brief focuses on Information Security

only guess at

Generic Methodology con't

Terminology)

Generic Methodology con't

Mission Operational needs Vulnerabilities Benefits Costs Consequences **Acceptable Risk Mitigation Recipe Outcome**

Generic Methodology con't

Security Requirements

"Every System" Baseline

- OS Patches
- Antivirus SW
- Access control methods
- System Partitioning
- Accountability
- System administration
- •Software development, Installation, CM....

NOT solution phase

Enterprise/
System Specific

Requirement Application in NAS

Enterprise Specific (NAS assumptions and constraints)

NAS Security Policy

C2 – (COTS based, no insider threat, no complex attacks

NAS Environment

Safety risks mitigated by situational awareness
Driven by high availability and high Integrity
Primarily Internal Maintenance function
Embedded legacy systems
Safety, Regulation, acquisitions - long lead times
Migration to COTS type systems
Testing of all system changes – lead times

NAS Culture

(Controller-Pilot) Open communications, trust based

Hero Culture

Stove-piped organizations-trusted employees Migration to collaborative environment

State of the NAS

Complex, separate systems

→ More tightly integrated systems (FREE FLIGHT)

Legacy systems, obscure protocols

COTS, TCP/IP, mobile code environment

Dedicated, leased facilities, closed environment

Shared services/networks both within and between facilities/partners

Analog systems - air-to-ground, ground-to-ground

Digital, integrated v/d services, new technologies

ATS Voice Communications to the Cockpit

Voice and Data

Unchallenged operation – (phantom pilot/controller...

Fast changing threats and vulnerabilities

Stable Technology

→ Major technology changes yearly

Security Concerns

What new security requirements are introduced into the NAS by:

technology changes, new system interface operation changes National Security needs

How can we implement these requirements so they are transparent (from a human factors perspective), maintain NAS performance, maintain publics confidence in the NAS?

Further Study

WHAT: Is Authentication needed and where?

HOW: Does the solution address design, implementation, management and recovery from compromise?

WHAT: Is confidentiality needed?

HOW: If so, what is the best methodology and technology?

WHAT: How should National Preparedness requirements be addressed?

HOW: Do we have mechanism, redundancy and alternate technologies to isolate, recover, maintain the NAS?

Challenge for Solution Providers

- 1) What problem does it solve?
- 2) How well does it solve the problem?
- 3) What new problems does it add?
- 4) What are the economic and social costs?
- 5) Given the above, is it worth the costs?

Bruce Schneier, Chief Technical Officer

Counterpane Internet Security, Inc.